2

You will need

- grid paper
- fraction strips
- a calculator

Comparing Fractions with Unlike Denominators

Goal Compare fractions when the denominators are different.

The 15 km Charity Walk-a-thon has

- a trail mix station every two thirds of a kilometre;
- a water station every three fourths of a kilometre; and
- a cooling station every three halves of a kilometre.

Ayan has reached the first water station, Mark is at the first cooling station, and Angele is at the second trail mix station.

? Who has walked the farthest?

Raven's Solution

I'll make a sketch of the first 2 km of the race on grid paper and mark the stations. I need to show halves, thirds, and fourths, so I want a whole that I can easily divide by 2, 3, or 4. I think a whole with 12 sections will work. 1 km will be represented by 12 squares. A third of 12 squares is 4 squares, so $\frac{1}{3}$ is 4 squares past 0 and $\frac{2}{3}$ is another 4 squares past $\frac{1}{3}$.

- A. Draw a number line for 0 km to 2 km. Mark all of the thirds. Label the trail mix stations.
- **B.** Mark the fractions for the cooling stations.
- C. Mark the fractions for the water stations.
- D. Mark the locations of the three students.
- E. Who has walked the farthest?

Reflecting

- 1. How did you decide where to put the water and cooling stations?
- 2. Look at the positions of these fractions on the number line: $\frac{2}{2}$, $\frac{2}{3}$, and $\frac{2}{4}$. Which fraction is greatest? Why does that make sense?
- 3. How can you compare fractions when both the numerators and denominators are different?

Use $\frac{3}{4}$ and $\frac{2}{3}$ as an example.

Checking

- 4. a) Write fractions for the locations of these stations:
 - b) Order the fractions in Part a) from greatest to least.
 - c) Explain the strategies you used to order the fractions.

Practising

5. Compare. Write >, <, or =. Explain your strategy.

a)
$$\frac{5}{6} \blacksquare \frac{1}{6}$$
 b) $\frac{2}{4} \blacksquare \frac{2}{5}$ c) $1\frac{1}{2} \blacksquare \frac{3}{4}$ d) $\frac{5}{2} \blacksquare 3\frac{1}{2}$

- 6. For each pair of stations in the Charity Walk-a-thon, which is farther from the start of the race? How do you know?
 - a) The second water station or the third trail mix station
 - b) The third cooling station or the fourth water station
 - c) The sixth trail mix station or the fourth cooling station
- 7. For each pair of chores, which one took longer to complete? Tell how you know.
 - a) $\frac{4}{5}$ h doing laundry or $\frac{2}{5}$ h vacuuming
 - b) $\frac{1}{3}$ h washing dishes or $\frac{1}{5}$ h drying dishes

c) $\frac{1}{2}$ h collecting garbage or $\frac{3}{5}$ h cleaning the bathroom

- 8. Count by fourths from 0 to 4.
- 9. What is the greatest value you can use to make each true?

a)
$$\frac{1}{5} < \frac{3}{4}$$
 b) $3\frac{2}{3} < 3\frac{4}{10}$ c) $4\frac{3}{8} > 1\frac{2}{3}$

- T, the fourth trail mix station
- W, the third water station
- C, the third cooling station